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Abstract

Multimodal time series forecasting is foundational in various fields, such as uti-
lizing satellite imagery and numerical data for predicting typhoons in climate sci-
ence. However, existing multimodal approaches primarily focus on utilizing text
data to help time series forecasting, leaving the visual data in existing time series
datasets untouched. Furthermore, it is challenging for models to effectively cap-
ture the physical information embedded in visual data, such as satellite imagery’s
temporal and geospatial context, which extends beyond images themselves. To
address this gap, we propose physics-informed positional encoding (PIPE), a
lightweight method that embeds physical information into vision language mod-
els (VLMs). PIPE introduces two key innovations: (1) a physics-informed posi-
tional indexing scheme for mapping physics to positional IDs, and (2) a variant-
frequency positional encoding mechanism for encoding frequency information of
physical variables and sequential order of tokens within the embedding space. By
preserving both the physical information and sequential order information, PIPE
significantly improves multimodal alignment and forecasting accuracy. Through
the experiments on the most representative and the largest open-sourced satellite
image dataset, PIPE achieves state-of-the-art performance in both deep learning
forecasting and climate domain methods, demonstrating superiority across bench-
marks, including a 12% improvement in typhoon intensity forecasting over prior
works. Our code is provided in the supplementary material.

1 Introduction

Time series forecasting plays a crucial role in climate modeling [56]. This task involves modeling
temporal dependencies to predict future values of a target variable, a challenge exacerbated by noise,
non-stationarity, and the frequent need to integrate heterogeneous auxiliary data. While traditional
methods like Autoregressive Integrated Moving Average (ARIMA) rely on statistical priors [11],
deep learning architectures (e.g., LSTMs [12], Transformers [45]) have recently dominated the field
by learning latent temporal patterns from data. However, these methods still struggle to deliver
precise forecasts amid the complexity and scale of real-world data, leaving high-stakes tasks such as
typhoon-track prediction continue to have a long way to go.

The rise of large language models (LLMs) as a type of sequence modeling has introduced new op-
portunities for time series forecasting. Although LLMs were originally built for NLP tasks such
as text generation [34] and summarization [6], their core objective naturally aligns with time-series
forecasting: predicting the next token in a sentence mirrors forecasting the next value in a sequence,
both conditioned on historical context. Consequently, existing work adapts LLMs to forecasting
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Figure 1: The multimodal time series forecasting task and the forecasting results for Typhoon Yutu
by our PIPE-3B. The leading time is 12 hours and the time gap between neighbouring dots is 12
hours. In multimodal time series forecasting, satellite images can improve the forecasting accuracy.

through tokenization techniques or patching technology to splice time-series segments into model
context [60]. More recent work broadens the paradigm by injecting auxiliary instructions or de-
scriptions through zero-/few-shot inference [4], in-context learning [30], and text-augmented fore-
casting [16]. Several studies push the scope further by incorporating explicit temporal cues, for
example, TimeLLM [16] and UniTime [27] involve temporal information in prefix-prompts, while
AutoTimes embeds timestamps as positional encodings to integrate the temporal information [30].

However, existing methods for multimodal time series forecasting, which integrate visual and nu-
merical data, face numerous limitations. Integrating visual context, such as satellite imagery, into
forecasting is indispensable in climate [46] and other domains [14, 50], yet state-of-the-art vi-
sion–language models (VLMs) like GPT-4o [34], Gemini [44], and Qwen-VL [2] are tuned primarily
for general domain multimodal data. Furthermore, their projection layers, the vision encoder from
CLIP [39], cross-attention [25], Q-Former [22], and MLP [26], solely focus on pixel-level semantics
and overlook the rich physical metadata (e.g., timestamps and geo-coordinates) embedded in real-
world imagery. This omission limits their capacity to improve high-stakes multimodal forecasting
tasks. For example, typhoon track prediction with satellite imagery (Figure 1) requires correlating
pixel values with the time-specific geophysical attributes (e.g., latitude, longitude) embedded in each
pixel. As a result, addressing these overlooked physical dimensions beyond the pixel-level values
in multimodal time-series forecasting not only fills a critical gap in existing alignment methods that
only focus on the pixel-level values but also introduces a new task for multimodal alignment.

To address these challenges, we propose physics-informed positional encoding (PIPE), a
lightweight method to embed latent physical metadata (e.g., timestamps, geospatial coordinates) into
positional encodings. Unlike traditional positional encodings, which focus solely on the sequence
order of tokens within one input instance [45, 10], PIPE encodes shared global physical knowledge
(e.g., latitude-longitude relationships consistent across instances) while preserving sequence order
information. Specifically, PIPE introduces two key innovations: (1) a physics-informed positional
indexing scheme that maps physics to positional IDs, and (2) variant-frequency positional encod-
ing that integrates the attributes of physical variables in the input embedding space. They maintain
the original token topology while enabling explicit modeling of geographic-temporal dependen-
cies. Experiments on the most representative and the largest open-sourced satellite image dataset
for typhoons, Digital Typhoon [20], demonstrate improved cross-modal integration and forecasting
accuracy. PIPE achieves state-of-the-art performance compared to general AI and domain models
across multiple benchmarks on the multimodal time series forecasting task.

Our contributions are threefold:

• We propose the multimodal time-series forecasting framework to integrate visual infor-
mation, where time series data is accompanied by corresponding vision data, extending
beyond conventional univariate/multivariate time series forecasting.

• We propose the PIPE, a method to embed physical knowledge into VLMs. Our method
contains two key innovations: (1) physics-informed positional indexing and (2) variant-
frequency positional encoding.
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• Through comprehensive experiments on the most representative task and the largest open-
sourced satellite image dataset, we show an obvious gain (12% for intensity forecasting)
after appropriately integrating vision and physics. Through the ablation study, we quantify
the benefits of (1) integrating visual data for multimodal time series forecasting (8% for
intensity forecasting) and (2) integrating physics knowledge (6% for intensity forecasting).

2 Related Work

2.1 Transformers for Time-series Forecasting

Transformers are widely used for time series forecasting, demonstrating superior performance over
traditional statistical models and RNN [40] architectures. Key innovations driving this success in-
clude efficient attention mechanisms and architectural adaptations tailored to temporal patterns. Re-
cent works have introduced several enhancements to address computational complexity and domain-
specific challenges. Informer [59] tackles the quadratic complexity of standard self-attention
through ProbSparse attention combined with distillation operations to prioritize crucial temporal
features. Autoformer [55] integrates decomposition from time-series analysis with autocorrelation-
inspired attention and outperforms self-attention in both efficiency and accuracy. iTransformer [29]
applies the attention and network on the inverted dimensions for time series forecasting. One Fits
All [60] fine-tunes on all major types of tasks involving time series. Other variations on transformer
include CrossFormer [49], TimeXer [51], TimeMixer [48], etc.

The patching paradigm has inspired multiple variants. PatchTST [32] segments time series into local
windows as input tokens while maintaining channel independence for multivariate data. Building on
this concept, works such as Pathformer [5] and Sageformer [57] research transformer-based patching
technology in terms of multiscale and inter-series dependencies. Notably, works such as One Fits
All [60] and Time-LLM [16] demonstrate the transferability of patching strategies by adapting pre-
trained large language models to time-series forecasting through input token alignment.

However, these developments underscore the challenge of managing complexity when incorporating
additional modules, such as patch-based components. Our method incorporates physical information
via Position IDs, avoiding the need for extra models.

2.2 Multimodal LLMs for Time Series Forecasting

Recent advances in LLMs have catalyzed efforts to develop multimodal models capable of process-
ing diverse data modalities (e.g., text, images, audio) through unified architectures. This paradigm
has inspired time-series forecasting adaptations that integrate textual instructions with temporal data.
TimeLLM [16] reprograms the input time series with text timestamps as prefix-prompts to align the
two modalities. Unitime [27] utilizes prefix-prompts to encode frequency information of tempo-
ral data to augment the model. AutoTimes [30] uses the embedding of textual timestamps as the
position encoding to incorporate temporal information. Subsequent works like UrbanGPT [23],
TEST [43], ChatTime [47], and GPR4MTS [15] utilize similar methods, aligning text instructions
and time series for the augmentation of time series forecasting.

However, for time series forecasting, existing multimodal approaches focus narrowly on aligning
textual instructions with numerical time series, neglecting critical vision modalities inherent to many
forecasting scenarios, such as typhoon forecasting. Our work researches the utilization of vision data
for time series forecasting.

2.3 Position Encoding in Transformers

Transformers require explicit position encoding to capture sequential order information, unlike
RNNs that inherently model temporal relationships through hidden state propagation. Current posi-
tion encoding strategies can be categorized into two primary paradigms:

1. Absolute position encodes the absolute position of a unit within a sentence. The original Trans-
former architecture [45] introduced two variants: 1) Learned positional embeddings during training
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stages. 2) Fixed sinusoidal functions:

PE(pos,2i) = sin(
pos

100002i/dmodel
) (1)

PE(pos,2i+1) = cos(
pos

100002i/dmodel
)

where i denotes the dimension, pos is the position, and dmodel is the dimension of embeddings. This
matrix is simply added to the embeddings before they are fed to the Transformer model. Subsequent
methods have been proposed to address the challenges of long sequences [19, 28] and improve
efficiency [37].

2. Relative position encodes the position of a unit relative to other units. Shaw et al. [41] pioneered
this approach by modifying self-attention to compute relative position biases. Transformer-XL [7]
introduces recurrence-aware position encoding for long-context modeling. Ke et al. [18] propose
untied position embeddings to add relative position embeddings through additive scalar biases. Wu
et al. [52] propose to incorporate the real distances between tokens to re-scale the raw self-attention
weights. Rotary Position Embedding (RoPE) [42] injects relative positions via rotation matrices.

Though effective for local sequence modeling, these methods focus on intra-instance positional re-
lationships within individual input samples. For time-series forecasting tasks where cross-instance
physical dependencies are critical (e.g., all instances share the global knowledge of geographic in-
formation), existing approaches fail to capture global temporal-spatial correlations across the entire
dataset. Our work addresses this limitation through physics-informed position encoding. By en-
coding global timestamps with geographic coordinates (latitude/longitude), our method preserves
continuous spatiotemporal relationships across independent time-series sequences.

3 Method

This section formalizes the multimodal time series forecasting problem and proposes physics-
informed positional encodingPIPE (PIPE) that integrates physical information into VLMs for the
multimodal time series forecasting. A schematic overview of the method is provided in Figure 2.

3.1 Multimodal Time Series Forecasting Problem Formulation

We address the problem of multimodal time series forecasting, where historical observations com-
prise both time series data of multiple variables and visual images. Given a sequence of historical
time steps:

xt−H+1:t = {xt−H+1,xt−H+2, ...,xt} ∈ RH×C (2)
where H denotes the historical time steps, C the number of variates, along with a corresponding
sequence of H images: it−H+1:t ∈ R3×Himg×Wimg for each time step with Himg,Wimg as the
height and width of the image, the objective is to forecast the future F time steps:

xt+1:t+F = {xt+1,xt+2, ...,xt+F } ∈ RF×C (3)

Our task is to propose a VLM model as a cross-modal forecaster fV LM (·) to model cross-modal
relationships between the multivariate sequence xt−H+1:t and visual sequence it−H+1:t. Formally,
we seek to learn:

x̂t+1:t+F = fV LM (xt−H+1:t, it−H+1:t) (4)

3.2 VLMs for Multimodal Time Series Forecasting

To perform the multimodal time series forecasting, we use the VLM to encode the time series input
and the vision input, following the practice of VLM’s pipeline.

Text embedding To leverage the capability of the pretrained LLM (Qwen-2.5-vl [2] in this paper),
we tokenize the time series data, xt−H+1:t, into tokens and concatenate them with task-specific in-
structions (e.g., “Predict next 24 hours of typhoon track”). They are fed into the LLM’s transformer
layers, as depicted with purple inputs in Figure 2. The LLM is trained during the training stage. The
prompt design for multimodal time series forecasting can be found in Appendix A.
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Figure 2: The framework of physics-informed positional encoding. It includes: (1) a physics-
informed positional indexing scheme that maps physics to positional IDs, and (2) variant-frequency
positional encoding that integrates the attributes of physical variables in the input embedding space.

Vision embedding Each image it ∈ R3×Himg×Wimg is split into N non-overlapping patches
{pt,k}Nk=1, where pt,k ∈ R3×28×28. These patches are encoded using the pretrained vision encoder
of Qwen-2.5-vl, producing embeddings that are dimensionally consistent with the text tokens, as
depicted with blue inputs in Figure 2. The vision encoder is frozen during the training stage.

3.3 PIPE

We propose PIPE to incorporate physical information into multimodal alignment for multimodal
time series forecasting. Our proposed PIPE includes two cores: physics-informed positional index-
ing (Figure 2 1⃝) and variant-frequency positional encoding (Figure 2 2⃝). The algorithm can be
found in Appendix B.

3.3.1 Physics-Informed Positional Indexing

We propose physics-informed positional indexing to integrate physical information into the model.

Schemes of indexing position IDs. Incorporating physical information into the model using po-
sitional IDs provides a direct solution without the need for additional structural complexity. We
explore three indexing strategies to facilitate this integration:

(1) Sequential indexing. The most intuitive approach is to follow the standard transformer prac-
tice [45] and ViT [10], using the sequence to index the position IDs. In this scheme, the positional
IDs are indexed linearly as:

position_ids = [0, 1, 2, . . . , seq_len− 1] (5)

where seq_len represents the total length of the input sequence, including both text tokens and vision
tokens. This approach effectively encodes 1D sequential order but lacks explicit order information
of the image (2D) or video (3D) for multimodal inputs.

(2) 3D indexing. Building on Qwen-2.5-VL [2], this method expands positional indexing to include
three independent dimensions: temporal, height, and width, for the alignment of images and videos.
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• Text tokens continue to use sequential indexing described in Equation 5, while vision tokens are
indexed based on their temporal and spatial attributes.

• Temporal positions of vision tokens are calculated as:

t = tokens_per_second× temporal_patch_size/fps (6)

where tokens_per_second dictates how many time steps are conceptually packed into a one-
second interval of the video, temporal_patch_size is the number of frames, and fps is the
video’s frame rate.

• For spatial dimensions of vision tokens, the height and width positional IDs correspond to a patch
grid ranging from (0, 0) to (Nrow − 1, Ncol− 1), where Nrow and Ncol are the numbers of image
patching in height and width, respectively. Although this 3D indexing scheme aligns temporal
and spatial order within vision tokens, it only captures the intra-relationship of positions with the
input instance. It does not explicitly encode extra-physical properties such as time, latitude, and
longitude, which are global knowledge among all instances in the dataset.

(3) Physics-Informed positional indexing (Figure 2). To address the limitations of 3D indexing,
we propose a novel physics-informed positional indexing scheme that explicitly integrates global
knowledge of physical attributes into positional IDs.

• Text embeddings continue to use the sequence indexing scheme described in Equation 5.
• Temporal positional IDs of vision tokens are computed based on the hourly progression of a given

year. Specifically, the temporal position ID is calculated by:

t = tday × 24 + thour (7)

where tday is the day of the year (ranging from 0 to 365) and thour represents the hour of the
day (ranging from 0 to 23). This indexing introduces meaningful temporal patterns aligned with
real-world time progression.

• The height and width positional IDs of vision tokens are determined using the latitude and longi-
tude of the image patch centers.

To prevent the performance decreases caused by the conflicts between the physical information of
vision tokens and the order information of text tokens (refer to the ablation experiment section 4.6),
we map the range of vision positional IDs (t: 0 − 8784 (8784 hours in a year), lat: 0 − 180, lng:
0− 360) to negative values. This avoids overlap with the text positional ID range, ensuring smooth
multimodal integration. Moreover, temporal, latitudinal, and longitudinal dimensions are inherently
independent, eliminating concerns about overlap.

After incorporating the cross-instance physical information among all input samples using physics-
informed positional indexing, we apply RoPE [42] on position IDs to encode intra-instance posi-
tional relationships within individual input samples.

3.3.2 Variant-Frequency Positional Encoding

We also merge the information of the physical variables into input embeddings. To differentiate
between physical variables, we modify the standard sinusoidal positional encoding (Equation 1) by
introducing a variant-frequency sinusoidal function.

Variant-frequency sinusoidal function This function modifies the sine and cosine components
and the target dimension based on the temporal, latitude, and longitude frequencies. Figure 2 illus-
trates the setting, Equation 9 in the Appendix gives the complete definition, and Figure 4 visualizes
the function. For conciseness, the function for image tokens can be formulated as:

PE(pos,2i) = sin(
pos

100002i/dmodel
× 2π

p
) (8)

PE(pos,2i+1) = cos(
pos

100002i/dmodel
× 2π

p
)

where pos can be tday , thour, lat, and lng depending on the dimensions. tday is the day of the year
(ranging from 0 to 365) and thour represents the hour of the day (ranging from 0 to 23). lat is the
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latitude of the image token, and lng is the longitude of the image token. p represents the wavelength
specific to physics. For temporal data, pday = 366 and phour = 24 and for spatial dimensions,
platitude = 180 and plongitude = 360. After the modification, the wavelengths form a geometric
progression from p to p · 10000/2 for vision data.

Text tokens preserve the standard sinusoidal encoding to maintain compatibility with pretrained
LLM structures. These variant-frequency position encodings are added to the input embeddings
at the bottom of the decoder stacks after they are divided by dmodel. They map different physical
variables to distinct frequency domains before incorporating them into the input embedding space.

4 Experiments

This section presents a systematic evaluation of the proposed method for the most representative
multimodal time series forecasting task, typhoon forecasting. We first describe the datasets, baseline
methods, and evaluation metrics, followed by the experiments and ablation studies.

4.1 Dataset

For multimodal time series forecasting, we utilize the open-source Digital Typhoon dataset [20],
the longest hourly satellite imagery collection dedicated to typhoon analysis spanning 40+ years
(1978–2023) with a 5 km spatial resolution. The spatial coverage of the dataset is the Western
North Pacific basin. The dataset includes 1,116 typhoon sequences and 192,956 images (resolution
of 512×512 and resized to 224x224). The size of the dataset is different from the size in the original
paper since the dataset is being regularly updated.

Typhoon track annotations, including intensity, latitude, and longitude, are sourced from the Best
Track dataset [21]. It is the best estimate, a globally recognized benchmark derived from retrospec-
tive post-event analysis. This metadata ensures reliable spatiotemporal grounding, as it synthesizes
all available observational data to reconstruct each typhoon’s lifecycle with high precision. In our
experiments, we will forecast three variables: intensity, latitude, and longitude. The dataset is split
using a ratio of 0.7:0.15:0.15 based on the typhoon sequences as the original dataset.

4.2 Baselines

Domain models For typhoon forecasting, we compare our method against the state-of-the-art
domain-specific NWP-based model: forecasting system of the European Centre for Medium-Range
Weather Forecasts (ECMWF) [9] and two environment-domain large models, Pangu [3] and Gen-
Cast [38], which serve as domain-specific benchmarks. Additionally, we include comparisons with
the domain practice method, Typhoon Intensity Forecasting based on the SHIPS method (TIFS) [33].
We report only the available performance from their paper and do not retrain the models, as we can-
not reproduce these domain models.

AI models We train the state-of-the-art AI models with our dataset, including Transformer-based
models (PatchTST [32], iTransformer [29], Crossformer [49], TimeXer [51]) and linear-based mod-
els (TiDE [8]), LLM-based model (One Fits ALL [60], AutoTimes [30]), and other models (Times-
Net [53], TimeMixer [48]). Due to their model design, they do not incorporate visual data. For
the visual data integration, we include benchmark results reported in the original dataset publication
(only the leading time of 12h is available) [20] and train the original Qwen-2.5-VL [2].

Implementation Details Both our method and baselines use the same temporal settings with the
same length of input and output sequences (12h). For One Fits All and AutoTimes, we use their
official implementations. Other models without vision, their implementations are through the pub-
licly available Time-Series-Library [54]. For the Qwen-2.5-VL model and PIPE, we use LLama-
Factory [58] for their implementation. More implementation specifics, including hyperparameters
and training protocols, are detailed in Appendix C.
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Table 1: Multimodal time series forecasting results (leading time is 6h).

Models Intensity (hPa) Latitude (◦) Longitude (◦) Distance (km)
MAE RMSE MAE RMSE MAE RMSE MAE

do
m

ai
n ECMWF-HRES [9]

\ \ \
27.181

PanGu [3] 32.892
GenCast [38] 20.331
TIFS [33] \ 7.292 \

w
/o

vi
si

on

PatchTST [32] 1.806 2.867 0.199 0.266 0.322 0.404 44.537
iTransformer [29] 1.848 2.979 0.164 0.231 0.203 0.281 31.248
Crossformer [49] 2.389 3.599 0.310 0.418 0.520 0.684 71.216
TimeXer [51]) 3.037 4.523 0.306 0.411 0.411 0.538 59.720
TiDE [8] 1.724 2.819 0.161 0.224 0.237 0.312 34.068
One Fits All [60]) 1.849 2.976 0.170 0.239 0.211 0.290 32.450
AutoTimes [30] 1.991 3.088 0.190 0.265 0.279 0.364 40.036
TimesNet [53] 2.401 3.711 0.465 0.630 0.855 1.124 113.718
TimeMixer [48] 1.913 2.973 0.177 0.237 0.238 0.313 35.374

vi
si

on Qwen-2.5-VL-3B [2] 1.617 3.231 0.087 0.162 0.103 0.187 17.129

PIPE-3B 1.515 2.981 0.084 0.159 0.095 0.178 16.275

4.3 Evaluation Metrics

In NLP tasks, metrics such as ROUGE [24] and BLEU [35] are commonly employed as the metrics.
In our cases, we focus on the numerical output. Specifically, for forecasting intensity, latitude, and
longitude, we use Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) as primary
metrics. When the model accurately predicts these numerical values based on satellite images, we
consider it to have effectively aligned the satellite imagery with the time series data. Additionally,
we use geographiclib [17] to calculate the position error of typhoon tracks based on the latitude and
longitude, following the domain practice.

4.4 Main Results

The forecasting performance of multimodal time series models is summarized in Table 1 (6-hour
lead time) and Table 4 (12-hour lead time), with the best results highlighted in bold and the second-
best results highlighted in underline.

Overall, our method achieves state-of-the-art performance across the majority of evaluation metrics,
demonstrating the efficacy of the proposed PIPE in integrating physical information during mul-
timodal alignment. For the 6-hour lead time (Table 1), our model outperforms baselines in most
metrics. For example, it shows 12% improvement of MAE for typhoon intensity forecasting when
compared to the best w/o vision models TiDE. The sole exception is the RMSE for intensity fore-
casting, where TiDE and PatchTST exhibit marginally superior performance. These results show the
effectiveness of our approach. A critical observation is the consistent superiority of models incorpo-
rating vision data over unimodal alternatives. This finding emphasizes the importance of leveraging
multimodal inputs to enhance forecasting accuracy in complex spatiotemporal tasks.

4.5 Regression Analysis

The regression results of all test typhoon sequences (Figure 3) demonstrate that our method achieves
accurate typhoon predictions. Notably, the model exhibits superior performance in location forecast-
ing compared to intensity forecasting, which may be attributed to the richer spatial information pro-
vided by satellite imagery for tracking movement. Additionally, the model shows better predictive
performance when typhoon intensity is weaker (i.e., higher central pressure, around 1000 hpa).

4.6 Ablation Study

The results of the ablation study are presented in Table 2 and Table 5, with the best performance
highlighted in bold. We systematically evaluate three critical components: vision inclusion, physics-
informed position indexing, and variant-frequency sinusoidal function.
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Intensitya b LongitudeLatitude c

Figure 3: The visualization for the regression results between predicted values and true values (lead-
ing time is 6 hours). (a) Plots for intensity. (b) Plots for latitude. (c) Plots for longitude.

Table 2: The results of the ablation study (leading time is 6h).

Models Intensity (hPa) Latitude (◦) Longitude (◦) Distance (km)
MAE RMSE MAE RMSE MAE RMSE MAE

w/o vision 1.646 3.220 0.088 0.160 0.102 0.193 17.235

w/o 3D indexing (using sequence) 1.628 3.749 0.087 0.163 0.102 0.185 17.084
w/o physics-informed indexing (using 3D) 1.617 3.231 0.087 0.162 0.103 0.187 17.129
w/o negative indexing 1.961 3.926 0.206 0.360 0.388 0.674 53.548

w/o entire sinusoidal function 1.545 3.053 0.085 0.157 0.097 0.180 16.554
w/o variant-frequency sinusoidal function 1.639 3.178 0.086 0.161 0.101 0.604 16.860

PIPE-3B 1.515 2.981 0.084 0.159 0.095 0.178 16.275

The gain of aligning vision The inclusion of satellite vision data yields significant improvements
in forecasting accuracy. Specifically, the MAE for intensity forecasting improves by up to 8% when
the leading time is set to 6 hours. This demonstrates that cross-modal learning effectively leverages
spatial patterns in satellite imagery to complement time series data.

Comparison of schemes of indexing position IDs Our physics-informed indexing scheme ad-
dresses the critical challenge of preserving physical knowledge while avoiding token order conflicts.
To assess its effectiveness, we compare different schemes for indexing position IDs. Specifically,
we evaluate the performance by (a) removing the 3D indexing scheme (replacing it with sequential
indexing), and (b) removing physics-informed indexing while retaining the 3D indexing scheme.
The results show that while sequential indexing and 3D indexing perform similarly, both exhibit a
noticeable performance degradation (6% for MAE of intensity forecasting) compared to the physics-
informed indexing scheme. Avoiding the overlap between the physical information of vision tokens
and the order information of text tokens is critical. There is a dramatic performance decrease when
they share overlapping ranges (e.g., longitude: 0−360 and text tokens: 0−seqlen (seqlen is the num-
ber of text tokens)). By mapping the position IDs of vision tokens to negative values, we preserve
the physical information and resolve such conflicts, leading to improved performance.

The gain of integrating physical variables’ frequency The incorporation of frequency charac-
teristics of physical variables improves physical variable modeling. We show the importance by
removing the entire sinusoidal function and only removing the variant-frequency sinusoidal func-
tion. The results reveal that our designed sinusoidal function plays a crucial role in aligning the
model with the frequency information of physical variables. Its inclusion enhances the model’s
ability to leverage these variables effectively, leading to improved performance.

Every component contributes to the multimodal time series forecasting, with vision alignment pro-
viding complementary visual patterns, the physics-informed indexing scheme ensuring physical
knowledge integration, and the variant-frequency sinusoidal function incorporating physical vari-
ables’ frequency information.
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5 Conclusion

This paper proposes a multimodal time series forecasting task and addresses the challenge brought
by integrating satellite imagery. Existing approaches only focus on pixel-level features, overlook-
ing the rich temporal and geophysical context embedded within vision data. We propose physics-
informed position encoding (PIPE). Experimental results demonstrate that PIPE achieves state-
of-the-art performance across multiple benchmarks. Ablation studies further validate the distinct
contributions of each component. Future work will explore the integration of additional physical
domain knowledge, such as physical laws and constraints, to enhance real-world applicability.
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A Prompts Design

We show our prompt design for the multimodal time series forecasting, taking one instance of Ty-
phoon Yutu as an example.

System Prompt & Task Instruction

You are a typhoon forecasting expert. Below are the past 12 hours of typhoon data and the
corresponding satellite images. Your task is to forecast the hourly data of the typhoon for
the next 12 hours, providing the forecast latitude, longitude, pressure in the same format as
the past data format.

Past Data

The corresponding satellite images are: <image> <image> <image> <image> <image> <im-
age> <image> <image> <image> <image> <image> <image>. The historical hourly data
from 2018-10-23 01:00:00 to 2018-10-23 12:00:00 is {latitude: [11.65, 11.7, 11.75, 11.8,
11.85, 11.9, 11.95, 11.99, 12.04, 12.09, 12.14, 12.2], longitude: [151.61, 151.41, 151.2,
150.99, 150.79, 150.6, 150.42, 150.26, 150.11, 149.97, 149.83, 149.7], pressure: [974.2,
973.3, 972.5, 971.7, 970.8, 970.0, 967.5, 965.0, 962.5, 960.0, 957.5, 955.0]}.

Label Data

The forecast hourly data is: {latitude: [12.26, 12.34, 12.42, 12.5, 12.6, 12.7, 12.81, 12.93,
13.05, 13.17, 13.29, 13.4], longitude: [149.57, 149.44, 149.31, 149.18, 149.04, 148.9,
148.76, 148.61, 148.46, 148.31, 148.15, 148.0], pressure: [954.2, 953.3, 952.5, 951.7, 950.8,
950.0, 945.8, 941.7, 937.5, 933.3, 929.2, 925.0].}

Image Data

1 2 3 4 5 6

7 8 9 10 11 12
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B Method

B.1 Algorithms

In this section, we present the algorithms for PIPE (algorithm 1), which integrates physical infor-
mation into VLMs. To begin, we extract the required physical information (algorithm 2) from the
time series data corresponding to each satellite image. This information includes the timestamp and
geocoordinates for the typhoon’s eye. Additionally, since satellite images are divided into patches,
we calculate the geocoordinates for the center of each patch. Next, we incorporate this physical
information into the positional encoding of VLMs through physics-informed positional indexing
(algorithm 3). Beyond indexing, we adapt the sinusoidal function by introducing variant-frequency
sinusoidal encoding (algorithm 4), which embeds the frequency attributes of the variables into the
positional embedding. This enhanced positional embedding is then added to the input embedding
of the corresponding image tokens. Finally, these integrations are utilized to predict the next token,
enabling the model to leverage both spatial and physical context effectively.

Algorithm 1: PIPE
Require: Time series input x, corresponding image i
Ensure: Next token prediction T next

1: T text,T image = tokenizer(x), vision_encoder(i) ▷ Tokenization
2: t, lat, lng ← get_physic(x,T image) ▷ Extract physical info (algorithm 2):

t, lat, lng ∈ R1×len(T image)

3: ids← position_indexing(T text,T image, t, lat, lng) ▷ Compute physics-informed indices
(algorithm 3): ids ∈ R3×len(T text+T image))

4: PE ← vf_fun(pos, i) ▷ Generate variant-frequency position embedding (algorithm 4):
PE ∈ Rlen(T text+T image)×dmodel

5: IE ← [T text,T image]⊕ PE/dmodel ▷ Update input embeddings
6: T next ← fV LM (IE, ids) ▷ Predict next token

Algorithm 2: Extract Physical Information for Image Tokens
Require: Input x,T image

Ensure: Time (tday, thour) and location (lat, lng) for each image tokens
1: t← x ▷ Extract temporal information from time series input (Equation 7)
2: tday, thour ← t//24, t%24
3: latimage, lngimage ← x ▷ Extract spatial information for the entire image.
4: lat, lng ← get_center(T image, latimage, lngimage) ▷ Compute center coordinates for

patches

Algorithm 3: Physics-Informed Positional Indexing
Require: T text,T image, t, lat, lng
Ensure: Physics-Informed ids

1: idstext ← sequential_indexing ▷ Assign sequential indices to text tokens (Equation 5)
2: idsimage ← physics-informed indexing ▷ Assign [t, lat, lng] to image tokens (Figure 2)
3: ids← [idstext, idsimage] ▷ ids ∈ R3×len(T text+T image))

Algorithm 4: Variant-Frequency Sinusoidal Encoding
Require: Position pos
Ensure: Variant-frequency position embedding PE

1: PEtext ← standard sinusoidal function (Equation 1)
2: PEimage ← variant-frequency sinusoidal function (Equation 9)
3: PE ← [PEtext,PEimage]
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B.2 Variant-frequency sinusoidal function

This section presents the complete formal definition of the variant-frequency sinusoidal function.
The model dimensions are partitioned into two distinct components: temporal dimensions (first half)
and spatial dimensions (latter half). Regarding the temporal dimensions, they combine the encoding
of tday and thour. Similarly, for the spatial dimensions, they combine the latitude embeddings for
lat and the longitude embeddings for lng. This dimensional combination enables simultaneous
representation of both temporal and spatial characteristics within the unified model framework. We
also visualize the function (Figure 4) taking the dmodel = 128 as an example.

PE(pos,4i) = sin(
tday

100004i/dmodel
× 2π

pday
) if 4i ≤ dmodel

2
(9)

PE(pos,4i+1) = cos(
tday

100004i/dmodel
× 2π

pday
) if 4i+ 1 ≤ dmodel

2

PE(pos,4i+2) = sin(
thour

100004i/dmodel
× 2π

phour
) if 4i+ 2 ≤ dmodel

2

PE(pos,4i+3) = cos(
thour

100004i/dmodel
× 2π

phour
) if 4i+ 3 ≤ dmodel

2

PE(pos,4i) = sin(
lat

100004i/dmodel−1/2
× 2π

plat
) if

dmodel

2
< 4i ≤ dmodel

PE(pos,4i+1) = cos(
lat

100004i/dmodel−1/2
× 2π

plat
) if

dmodel

2
< 4i+ 1 ≤ dmodel

PE(pos,4i+2) = sin(
lng

100004i/dmodel−1/2
× 2π

plng
) if

dmodel

2
< 4i+ 2 ≤ dmodel

PE(pos,4i+3) = cos(
lng

100004i/dmodel−1/2
× 2π

phour
) if

dmodel

2
< 4i+ 3 ≤ dmodel

where for temporal dimensions pday = 366 and phour = 24, while for spatial dimensions,
platitude = 180 and plongitude = 360. tday is the day of the year (ranging from 0 to 365) and
thour represents the hour of the day (ranging from 0 to 23). lat is the latitude of the image token,
and lng is the longitude of the image token.
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Figure 4: The 64-dimensional positional encoding for the physical variables. Each row represents
the embedding vector. The final position encoding will be 128-dimensional by combining them.
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C Implementation Details

VLMs training We leverage LLama-Factory [58] for training VLMs, utilizing PyTorch [36] on
NVIDIA H800 GPUs. The optimization process employs the AdamW optimizer [31] with an initial
learning rate of 10−5 (using the cosine scheduler), a batch size of 1, and CrossEntropy loss over 1
training epoch. We provide the code for the reproduction.

Non-vision models One Fits All [60] and AutoTimes [30] are implemented using their official
repositories, adapted to accommodate our typhoon sequence dataset via modifications to the data
loader. Configuration follows original specifications: model dimensions of 768 (One Fits All) and
512 (AutoTimes), with a batch size of 128, learning rate of 10−4, and 10 training epochs. For other
AI models, we use the publicly available platform Time-Series-Library [54] to implement them. The
parameters for model dimensions and number of heads are based on their implementation (512) with
a batch size of 128 and a learning rate of 10−4, training epochs of 30, and patience of 10.

For domain models, the results are provided by the original paper.

Training Cost We use 4×NVIDIA H800 GPUs to train the models for one epoch. The training
time varies significantly across model sizes:

• PIPE-3B: 2.1 hours

• PIPE-7B: 3.7 hours

• PIPE-32B (LoRA [13] rank as 8): 0.7 hours

The PIPE-32B variant achieves substantial time efficiency through LoRA, which reduces trainable
parameters while maintaining competitive performance (as shown in Tables 8 and 9). This demon-
strates an effective balance between model capacity and computational overhead. For baseline AI
models (including LLM-based variants like AutoTimes (OPT model)), training completes in 1 hour
with a single NVIDIA RTX 4090 GPU.

D Dataset

We provide a comprehensive summary of the Digital Typhoon dataset [20].

Table 3: The detailed information of the Digital Typhoon dataset.

Digital Typhoon dataset

Temporal coverage 1978-2023 (present)
Temporal resolution one hour
Target satellites Himawari
Spatial coverage Western North Pacific basin
Spatial resolution 5km
Image coverage 512×512 pixels (1250km from the center)
Spectral coverage infrared (others on the Website)
Map projection Azimuthal equal-area projection
Calibration Recalibration
Data format HDF5
Best track Japan Meteorological Agency
Dataset browsing Digital Typhoon website

17



Table 4: Multimodal time series forecasting results (leading time is 12h).

Models Intensity (hPa) Latitude (◦) Longitude (◦) Distance (km)
MAE RMSE MAE RMSE MAE RMSE MAE

do
m

ai
n ECMWF-HRES [9]

\ \ \
44.972

PanGu [3] 44.630
GenCast [38] 37.930
TIFS [33] \ 9.061 \

w
/o

vi
si

on

PatchTST [32] 3.917 5.989 0.465 0.615 0.751 0.931 103.818
iTransformer [29] 4.004 6.157 0.412 0.558 0.565 0.736 83.174
Crossformer [49] 4.257 6.303 0.546 0.726 0.844 1.109 118.748
TimeXer [51]) 5.380 7.911 0.563 0.755 0.713 0.962 108.665
TiDE [8] 3.926 6.080 0.416 0.561 0.677 0.850 93.570
One Fits All [60]) 4.039 6.212 0.420 0.568 0.586 0.759 85.555
AutoTimes [30] 4.086 6.220 0.448 0.600 0.692 0.872 97.244
TimesNet [53] 4.798 7.220 0.892 1.133 1.796 2.147 230.376
TimeMixer [48] 4.227 6.290 0.400 0.533 0.524 0.685 78.569

vi
si

on

Original paper [20] \ 12.100 \ \ \
Qwen-2.5-VL-3B [2] 3.963 6.599 0.371 0.535 0.435 0.610 69.959

PIPE-3B 3.855 6.333 0.359 0.526 0.411 0.587 67.114

E Supplementary Results

E.1 Forecasting Results of More Leading Times

We present additional forecasting analyses in this section. First, we list the 12-hour lead-time fore-
casting performance of all baseline models (Table 4). Our model demonstrates state-of-the-art re-
sults across the majority of the evaluation metrics. Second, we list the result of the ablation study
when the leading time is 12 hours. The consistency between results at different leading times con-
firms the robustness of our architectural design, demonstrating that all modules contribute meaning-
fully to forecasting accuracy. Finally, we visualize the MAE for the forecasting of pressure, latitude,
longitude, and distance across lead times ranging from 1 to 12 hours (Figure 5). The results con-
firm that our model consistently achieves the lowest MAE values at all forecast leading times. This
systematic advantage over baseline models highlights the effectiveness of our model in maintaining
forecasting precision as the leading time increases.

Table 5: The results of the ablation study (leading time is 12h).

Models Intensity (hPa) Latitude (◦) Longitude (◦) Distance (km)
MAE RMSE MAE RMSE MAE RMSE MAE

w/o vision 4.120 6.820 0.372 0.532 0.436 0.616 70.138

w/o 3D indexing (using sequence) 3.936 6.809 0.366 0.535 0.434 0.611 69.382
w/o physics-informed indexing (using 3D) 3.963 6.599 0.371 0.535 0.435 0.610 69.959
w/o negative indexing 4.282 7.017 0.550 0.806 0.869 1.306 124.329

w/o entire sinusoidal function 3.827 6.387 0.364 0.527 0.416 0.590 67.904
w/o variant-frequency sinusoidal function 4.071 6.689 0.370 0.537 0.429 0.604 69.389

PIPE-3B 3.855 6.333 0.359 0.526 0.411 0.587 67.114

E.2 Experiment Statistical Report

The stability of PIPE’s forecasting performance is validated through standard deviation analysis
across three random seeds, reported in Tables Table 6 and Table 7.

E.3 Scaling Behavior

To evaluate the impact of model size on performance, we conduct experiments across three variants:
PIPE-3B, PIPE-7B, and PIPE-32B (with LoRA rank as 8). As demonstrated in Tables 8 and 9, the
largest model, PIPE-32B, yields performance improvements, even when leveraging LoRA.
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Figure 5: The performance across leading times ranging from 1 to 12 hours.

Table 6: The mean and the standard deviation of PIPE-3B from three random seeds (leading time is
6 hours).

Models Intensity (hPa) Latitude (◦) Longitude (◦) Distance (km)
MAE RMSE MAE RMSE MAE RMSE MAE

PIPE-3B-seed1 1.503 2.940 0.085 0.161 0.095 0.178 16.364
PIPE-3B-seed2 1.513 2.946 0.082 0.154 0.094 0.173 16.000
PIPE-3B-seed3 1.529 3.059 0.084 0.161 0.097 0.181 16.463

PIPE-3B 1.515 ± 0.011 2.981 ± 0.055 0.084 ± 0.001 0.159 ± 0.003 0.095 ± 0.001 0.178 ± 0.003 16.275 ± 0.200

E.4 Showcase

We present a prediction showcase (Figure 6) to compare our method with the methods that remove
satellite imagery and PIPE on the Typhoon Phanfone. PIPE achieves more accurate track forecasting
and intensity forecasting.

E.5 Attention Analysis

We compare the attention from the penultimate layer (Figure 7) with averaging across the head
dimension of PIPE-3B and Qwen2.5-VL-3B. It reveals distinct attention patterns. Qwen2.5-VL-3B
exhibits an obvious bias toward the initial tokens of the historical time series, as evidenced by an
obvious vertical line at 800th input tokens ((e) & (f)). In contrast, our PIPE model allocates greater
attention to both the image tokens and the historical time series tokens. Notably, PIPE’s attention
on image patches is concentrated on the typhoon region (e.g., central cloud structure), whereas
Qwen2.5-VL-3B’s attention appears diffuse and unstructured across the image. These differences
in attention mechanisms likely contribute to PIPE’s better forecasting accuracy.
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Table 7: The mean and the standard deviation of PIPE-3B from three random seeds (leading time is
12 hours).

Models Intensity (hPa) Latitude (◦) Longitude (◦) Distance (km)
MAE RMSE MAE RMSE MAE RMSE MAE

PIPE-3B-seed1 3.840 6.295 0.362 0.530 0.412 0.590 67.432
PIPE-3B-seed2 3.831 6.281 0.355 0.523 0.405 0.578 66.402
PIPE-3B-seed3 3.893 6.425 0.360 0.527 0.415 0.592 67.506

PIPE-3B 3.855 ± 0.027 6.333 ± 0.065 0.359 ± 0.003 0.526 ± 0.003 0.411 ± 0.004 0.587 ± 0.006 67.114 ± 0.050

Table 8: The results of PIPE-3B, PIPE-7B, and PIPE-32B (with LoRA) with the lead time of 6
hours.

Models Intensity (hPa) Latitude (◦) Longitude (◦) Distance (km)
MAE RMSE MAE RMSE MAE RMSE MAE

PIPE-3B 1.515 2.981 0.084 0.159 0.095 0.178 16.275
PIPE-7B 1.505 2.918 0.088 0.166 0.102 0.184 17.194
PIPE-32B 1.505 2.874 0.079 0.153 0.097 0.182 15.980
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Figure 7: Visualization of attention (normalized to 0-1 in each step) from the penultimate layer of
the PIPE model (top) and the Qwen2.5-VL-3B model (bottom), averaged across attention heads. (a)
& (e) The entire attention matrix. (b) & (f) The attention matrix of predicted tokens’ attention on the
input tokens, including image tokens and history time series tokens. (c) & (g) Attention of predicted
tokens on the first input image. (d) & (h) Attention of predicted tokens on the last input image.

We also compare the attention using Attention Rollout [1] (Figure 8) with averaging across the head
dimension of PIPE-3B and Qwen2.5-VL-3B. It also demonstrates that our model allocates more
reasonable attention to image tokens and historical time series tokens. Furthermore, our model’s
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Table 9: The results of PIPE-3B, PIPE-7B, and PIPE-32B (with LoRA) with the leading time of 12
hours.

Models Intensity (hPa) Latitude (◦) Longitude (◦) Distance (km)
MAE RMSE MAE RMSE MAE RMSE MAE

PIPE-3B 3.855 6.333 0.359 0.526 0.411 0.587 67.114
PIPE-7B 3.861 6.325 0.371 0.540 0.435 0.609 69.933
PIPE-32B 3.695 6.029 0.342 0.510 0.423 0.610 66.725

Figure 6: The results of Typhoon Phanfone comparison between PIPE, removing satellite images,
and removing PIPE. The leading time is 12 hours and the time gap between neighbouring dots is 12
hours.

attention on image patches is focused specifically on the typhoon region, whereas Qwen2.5-VL-
3B’s attention appears biased across the image.
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Figure 8: Visualization of attention (normalized to 0-1 in each step) using Attention Rollout of the
PIPE model (top) and the Qwen2.5-VL-3B model (bottom), averaged across attention heads. (a) &
(e) The entire attention matrix. (b) & (f) The attention matrix of predicted tokens’ attention on the
input tokens, including image tokens and history time series tokens. (c) & (g) Attention of predicted
tokens on the first input image. (d) & (h) Attention of predicted tokens on the last input image.

F Broader Impact

We introduce a novel multimodal time series forecasting task that integrates satellite imagery with
temporal data for capturing complex spatio-temporal dependencies. This approach leverages the
complementary strengths of temporal time series data and spatially rich visual inputs, enabling mod-
els to go beyond the limitations of traditional univariate, multivariate, or single-modality methods.
To address the inherent challenges of integrating satellite imagery into time series forecasting, we
propose a physics-informed positional encoding. This technique incorporates physical information
derived from satellite data, such as geospatial coordinates, to enhance the model’s ability to reason
about spatial and temporal dependencies. This innovation is particularly relevant for applications
where visual inputs carry critical physical context, including climate modeling, urban planning, and
agricultural forecasting. The broader impact of this work lies in its ability to bridge the gap between
traditional forecasting methods and real-world complexities that often include spatial and physical
components. By incorporating satellite imagery and physics-informed encoding, this method has
potential benefits across a wide range of scientific and practical domains.

G Limitation

While the integration of satellite imagery improves forecasting accuracy, it increases the compu-
tational complexity needed to process high-resolution images. To address these limitations, future
work will focus on improving the efficiency of integrating vision data into forecasting models to
enable longer input sequences and extended forecasting horizons for VLMs. Furthermore, we will
explore the incorporation of physical laws or constraints. Beyond embedding physical informa-
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tion, integrating domain-specific physical principles or environmental constraints could improve the
model’s interpretability and robustness.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We state our claim and contributions in our abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation in Appendix G.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose the implementation details in section 4 and Appendix C for re-
producing the results. We also provide the code and data in supplementary materials for
reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code and data in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to section 4 and Appendix C for the training and test details. We
introduce settings, training hyperparameters, optimizer, etc.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviations with three random seeds in subsection E.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computation cost in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have checked the NeurIPS Code of Ethics and our research conforms with
it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of our work in Appendix F, including the
impacts on other domains and scenarios.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the assets including dataset and code in section 4 and Ap-
pendix C.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We provide the readme file for our code in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs for the core method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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